Starting with data

Learning Objectives

  • load external data (CSV files) in memory using the survey table
  • (Ecoli_metadata.csv) as an example
  • explore the structure and the content of the data in R
  • understand what are factors and how to manipulate them

Lesson

Looking at Metadata

We are studying a population of Escherichia coli (designated Ara-3), which were propagated for more than 40,000 generations in a glucose-limited minimal medium. This medium was supplemented with citrate which E. coli cannot metabolize in the aerobic conditions of the experiment. Sequencing of the populations at regular time points reveals that spontaneous citrate-using mutants (Cit+) appeared at around 31,000 generations. This metadata describes information on the Ara-3 clones and the columns represent:

Column Description
sample clone name
generation generation when sample frozen
clade based on parsimony-based tree
strain ancestral strain
cit citrate-using mutant status
run Sequence read archive sample ID
genome_size size in Mbp (made up data for this lesson)

The metadata file required for this lesson can be downloaded by clicking on this link and should also be in the ~/dc_sample_data/r-genomics directory if you are using the connected to workshop genomics cloud machine.

  • First, make sure you are in the correct working directory by typing getwd(). (This should be ~/dc_sample_data/r-genomics in the workshop genomics cloud machine.
  • Second, create a new directory within this working directory called data
  • Third, move the downloaded file into this directory

You are now ready to load the data. We are going to use the R function read.csv() to load the data file into memory (as a data.frame):

metadata <- read.csv('data/Ecoli_metadata.csv')

This statement doesn't produce any output because assignment doesn't display anything. If we want to check that our data has been loaded, we can print the variable's value: metadata

Alternatively, wrapping an assignment in parentheses will perform the assignment and display it at the same time.

(metadata <- read.csv('data/Ecoli_metadata.csv'))

Wow... that was a lot of output. At least it means the data loaded properly. Let's check the top (the first 6 lines) of this data.frame using the function head():

head(metadata)

We've just done two very useful things. 1. We've read our data in to R, so now we can work with it in R 2. We've created a data frame (with the read.csv command) the standard way R works with data.

What are data frames?

data.frame is the de facto data structure for most tabular data and what we use for statistics and plotting.

A data.frame is a collection of vectors of identical lengths. Each vector represents a column, and each vector can be of a different data type (e.g., characters, integers, factors). The str() function is useful to inspect the data types of the columns.

A data.frame can be created by the functions read.csv() or read.table(), in other words, when importing spreadsheets from your hard drive (or the web).

By default, data.frame converts (= coerces) columns that contain characters (i.e., text) into the factor data type. Depending on what you want to do with the data, you may want to keep these columns as character. To do so, read.csv() and read.table() have an argument called stringsAsFactors which can be set to FALSE:

Let's now check the structure of this data.frame in more details with the function str():

str(metadata)

Inspecting data.frame objects

We already saw how the functions head() and str() can be useful to check the content and the structure of a data.frame. Here is a non-exhaustive list of functions to get a sense of the content/structure of the data.

  • Size:
    • dim() - returns a vector with the number of rows in the first element, and the number of columns as the second element (the dimensions of the object)
    • nrow() - returns the number of rows
    • ncol() - returns the number of columns
  • Content:
    • head() - shows the first 6 rows
    • tail() - shows the last 6 rows
  • Names:
    • names() - returns the column names (synonym of colnames() for data.frame objects)
    • rownames() - returns the row names
  • Summary:
    • str() - structure of the object and information about the class, length and content of each column
    • summary() - summary statistics for each column

Note: most of these functions are "generic", they can be used on other types of objects besides data.frame.

Challenge

Based on the give table of functions to asses data structure, can you answer the following questions?

  • What is the class of the object metadata?
  • How many rows and how many columns are in this object?
  • How many citrate+ mutants have been recorded in this population?

As you can see, many of the columns in our data frame are of a special class called factor. Before we learn more about the data.frame class, we are going to talk about factors. They are very useful but not necessarily intuitive, and therefore require some attention.

Factors

Factors are used to represent categorical data. Factors can be ordered or unordered and are an important class for statistical analysis and for plotting.

Factors are stored as integers, and have labels associated with these unique integers. While factors look (and often behave) like character vectors, they are actually integers under the hood, and you need to be careful when treating them like strings.

In the data frame we just imported, let's do {r, purl=TRUE} str(metadata)

We can see the names of the multiple columns. And, we see that some say things like Factor w/ 30 levels

When we read in a file, any column that contains text is automatically assumed to be a factor. Once created, factors can only contain a pre-defined set values, known as levels. By default, R always sorts levels in alphabetical order.

For instance, we see that cit is a Factor w/ 3 levels, minus, plus and unknown.

You can check this by using the function levels(), and check the number of levels using nlevels():

levels(citrate)
nlevels(citrate)

Sometimes, the order of the factors does not matter, other times you might want to specify the order because it is meaningful (e.g., "low", "medium", "high") or it is required by particular type of analysis. Additionally, specifying the order of the levels allows to compare levels:

expression <- factor(c("low", "high", "medium", "high", "low", "medium", "high"))
levels(expression)
expression <- factor(expression, levels=c("low", "medium", "high"))
levels(expression)
min(expression) ## doesn't work
expression <- factor(expression, levels=c("low", "medium", "high"), ordered=TRUE)
levels(expression)
min(expression) ## works!

In R's memory, these factors are represented by numbers (1, 2, 3). They are better than using simple integer labels because factors are self describing: "low", "medium", and "high"" is more descriptive than 1, 2, 3. Which is low? You wouldn't be able to tell with just integer data. Factors have this information built in. It is particularly helpful when there are many levels (like the species in our example data set).

Converting factors

If you need to convert a factor to a character vector, simply use as.character(x).

Converting a factor to a numeric vector is however a little trickier, and you have to go via a character vector. Compare:

f <- factor(c(1, 5, 10, 2))
as.numeric(f)               ## wrong! and there is no warning...
as.numeric(as.character(f)) ## works...
as.numeric(levels(f))[f]    ## The recommended way.

Challenge

The function table() tabulates observations and can be used to create bar plots quickly. For instance:

## Question: How can you recreate this plot but by having "control"
## being listed last instead of first?
exprmt <- factor(c("treat1", "treat2", "treat1", "treat3", "treat1", "control",
                   "treat1", "treat2", "treat3"))
table(exprmt)
barplot(table(exprmt))
exprmt <- factor(exprmt, levels=c("treat1", "treat2", "treat3", "control"))
barplot(table(exprmt))