DNA Barcoding Basics

What is DNA barcoding and why is there a need for it?

How Barcoding works

Plants are sampled

DNA is extracted

"Barcode" amplified

ACGAGTCGGTAGCTGCCCTCTGACTGCATCGAA TTGCTCCCCTACTACGTGCTATATGCGCTTACGAT CGTACGAAGATTTATAGAATGCTGCTACTGCTCC CTTATTCGATAACTAGCTCGATTATAGCTACGATG

Sequenced DNA is compared with plants in a barcode database

How many species can you name?

How many Animals did you name? How many mammals? How many plants? How many insects?

"Dog" Canis lupus familiaris

"Cat" Felis catus

"Oak Tree" Quercus alba

"Beetle" Popillia japonica

"Shark" Ginglymostoma cirratum

Problem 1: No one know how many species there are.

Vertebrates	Species	Invertebrates	Species	Plants
Mammals	5,490	Insects	1,000,000	Angiosperms
Birds	9,998	Mollusks	85,00	Gymnosperms
Reptiles	9,084	Crustaceans	47,000	Ferns and Allies
Amphibians	6,433	Corals	2,175	Mosses
Fishes	31,300	Arachnids	102,248	Green and Red Algae
Total	62,305	Total (+others)	1,305,250	Total

•There are currently between 1.5 and 2 million described species

•It is estimated that this number may represent as little as half of the true number of species

• Perhaps more than 1/3 of all species are threatened (IUCN Red list version 2010.1)

Problem 2: Even though there are millions of species, there is also a lack of agreement on what a "species" means.

Canis lupus

Canis lupus (familiaris)

Anas platyrhynchos

Defining what species are is a complex task

Dependent on many factors

- Interbreeding capabilities
- Morphological variation
- Ecological context
- Genetic similarities

Problem 3: Current taxonomic methods may be inadequate (or at least too slow) to capture vanishing biodiversity

Classical taxonomy is steeped in terminology that can act barrier to understanding and reduce the number of persons who are qualified to describe biodiversity

Leaves <u>alternate proximally</u>, opposite and ultimately <u>decussate distally</u>, $6-16 \times 4-13$ cm; <u>petiole</u> ca. as long as blade, <u>winged</u>, base clasping, <u>basal lobes stipulate</u>, growing as extensions of wings, less than 1 mm wide; blade 5–7-veined, <u>ovate</u>, <u>glabrous</u>, base typically <u>sagittate</u>, <u>margins</u> entire, <u>apex acute</u> to <u>acuminate</u>. <u>Staminate inflorescences</u> <u>axillary</u>, 1–2 per <u>axil</u>, <u>paniculate</u>, <u>fasciculate</u>; <u>panicles</u> bearing flowers <u>singly,bracteolate</u>, in a zigzag pattern along <u>rachis</u>, <u>internodes</u> less than 2 mm; <u>rachis</u> to 25 cm, secondary axes 1–3(–6), <u>fasciculate</u>, less than 3 cm, each subtended by <u>deltate-ovate</u> bracteole shorter than 1 mm. *Pistillate* <u>inflorescences</u> solitary, 4–8(–20)-flowered, 6–35 cm, <u>internodes</u> ca. 1 cm

The body form ranges from <u>hemispherical</u> (e.g., *Cleidostethus*) to <u>elongate</u> oval (e.g., *Clypastraea*) to latridiidlike (e.g., *Foadia*). Corylophids are typically dull brown, but some species have contrasting yellowish-brown patches on the <u>pronotum</u> or <u>elytra</u>. The <u>integument</u> is often densely punctured and may be <u>glabrous</u> or bear short, fine <u>recumbent setae</u>. Most corylophid adults can be diagnosed using the following morphological features: <u>Maxilla</u> with single <u>apical lobe</u>; <u>Mesotrochanter</u> short and strongly oblique; Head usually covered by <u>pronotum</u>; <u>Frontoclypeal suture</u> absent; Antennae elongate with <u>3-segmented club</u>; <u>Procoxal</u> cavities closed externally; Tarsal formula 4-4-4; Pygidium exposed

Adding to the complexity, if the specimen to be identified is immature in its development or damaged and incomplete, identification may be impossible.

Leaves <u>alternate proximally</u>, opposite and ultimately <u>decussate distally</u>, $6-16 \times 4-13$ cm; <u>petiole</u> ca. as long as blade, <u>winged</u>, base clasping, <u>basal lobes stipulate</u>, growing as extensions of wings, less than 1 mm wide; blade 5–7-veined, <u>ovate</u>, <u>glabrous</u>, base typically <u>sagittate</u>, margins entire, <u>apex acute</u> to <u>acuminate</u>. <u>Staminate inflorescences axillary</u>, 1–2 per <u>axil</u>, <u>paniculate</u>, <u>fasciculate</u>; <u>panicles</u> bearing flowers <u>singly,bracteolate</u>, in a zigzag pattern along <u>rachis</u>, <u>internodes</u> less than 2 mm; <u>rachis</u> to 25 cm, secondary axes 1–3(–6), <u>fasciculate</u>, less than 3 cm, each subtended by <u>deltate-ovate</u> <u>bracteole</u> shorter than 1 mm. *Pistillate* <u>inflorescences</u> solitary, 4–8(–20)-flowered, 6–35 cm, <u>internodes</u> ca. 1 cm

>Dioscorea alata (matK) gene, partial

Simple (A,T,G, or C) and more Reliably objective

Choosing a DNA barcode

There are many criteria that go in to selecting an appropriate region that can serve as a DNA barcode.

Three of them include:

- Universality
- Robustness
- Discrimination

Why are these three criteria important?

Discrimination

Barcoding regions must be different for each species. Ideally you are looking for a single DNA locus which differs in each species.

Oppositional Goals:

•Each loci must be different for each species

•Although loci must be different, they must be similar enough that they can be amplified by PCR, aligned and compared

Fail: Sequence is completely conserved, good for PCR, but uninformative as barcode

		i		10)		2	0			30			40			50			60				70	
Species	1	atg	teeg	g g	tag	g	gat	gt	a q	gat	ag	tg	tgat	ctag	ga	gg	tac	gtag	cttt	tg	at	g	at	gat	agaga
Species	2	atg	teeg	g g	tag	g	gat	egt	a g	gat	ag	tg	tgat	ctag	ga	gg	tac	gtag	cttt	tg	cat	g	at	gat	agaga
species	3	atg	teeg	g g	tag	g	gat	egt	a g	gat	ag	tg	tgat	ctag	ga	gg	tac	gtag	cttt	tg	at	g	at	gat	agaga
Species	4	a g	teeg	g g	tag	g	gat	gt	a g	gat	ag	tg	tgat	ctag	ga	gg	tac	gtag	cttt	tg	cat	g	at	gat	agaga
species	5	a g	teeg	g g	tag	g	gat	gt	a g	gat	ag	tg	gat	ctag	ga	gg	tac	gtag	etti	tg	at	g	at	gat	agaga
Speices	6	a g	teeg		tag	g	gat	gt	a o	gat	ag	t g	gat	ctag	ga	gg	tac	gtag	cttt	tg	at	g	at	gat	agaga

Fail: Sequence shows no conservation, impossible for PCR, but good as barcode

	-		10	20	30	40	50	60	70
Species	1	cttgaa	gaacto	ctgcactgca	ctctaactgct	gggtta <mark>ag</mark> o	tcgttgctage	gaggtcat	tggggtgg
Species		agactt	ttatto	gcatgagagca	cacggcaggcg	acttagtaaa	agctcgcgaggg	gttaagga <mark>c</mark> o	caacggttcctgg
Species	3	caaagt	ta <mark>c</mark> taa	tctgtccgaac	cgogcacaata	g <mark>t</mark> aaggg <mark>aa</mark> g	gcattggaaagt	caaga <mark>a</mark> aat	gcgtagctagcct
Species	4	acttgo	aa <mark>c</mark> gca	aacgcttaaaa	tcatttggtag	<pre>ctcatgtaca</pre>	agacgctaatct		
Species	5	aaaacct			tcatatcagtc				gaaacgtgagggt
Speices	6	gcatgtt	ctcaaa	atagactcgt	ga gc ggctc	dagacggad	gatgtccgtga	ataagg <mark>a</mark> aco	aatattet

Win: Sequence shows some (ideally ~70%) conservation, good for PCR, good as barcode

	•		10			20			30			40			50			60			70		
Species 1	atg-	gg	g	tageg	gat	g	tc	gat	aa	tg	tgat	ctag	ga	∎gg	a	gtag	aa	a <mark>t</mark> g	a	g	tt	gat	agaga
pecies 2	atg-	<u>c</u> ggc	g	tageg	gat	g	ta	gat	aa	tg	tgat	ctag	ga	gg	ac	gtag	att:	tg	a	g	at	gat	agaga
pecies 3	atgt	eegge	g	tagtg	gat	g		gat	aa	tg	tgat	ctag	ga	gg	a	gtag	cta	a t g	a	g	at	gat	agaga
pecies 4	atgt		g	tagtg	gat	g	ta	gat	aa	tg	tcat	ctag	ga	gg		gtag	ett:	ttg	a	g	at	gat	agaga
pecies 5	ctgt	<u>ee</u> gge	g	tagtg	gat	g	ta	gat	aa	tg	tcat	ctag	ga	gg	a	gtag	dt t'	ttg	a	g	at	gat	agaga
peices 6	atgt	tgg	g	tageg	gat	g	ta	gat	ag	tg	tgat	ctag	ga	gg	a	gtag	cta	atg	a	g	at	gat	agaga

Universality

Since barcoding protocols (typically) amplify a region of DNA by PCR, you need primers that will amplify consistently.

• Once you have a candidate locus (loci) that seem discriminatory, do these loci (possibly genes, but possibly non-coding DNA) exist in in virtually all of the species you wish to barcode?

• Will you be able to find PCR primers that can amplify across many species, despite mismatches?

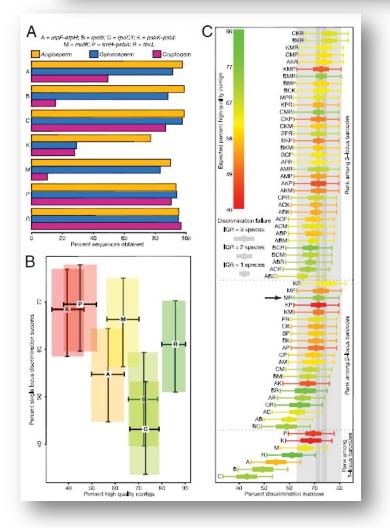
Robustness

Since barcoding protocols (typically) amplify a region of DNA by PCR, also need to select a locus that amplifies reliably, and sequences well.

•PCR is very sensitive to the chemistry involved (types of enzymes, concentration of reagents, cycling parameters, etc.

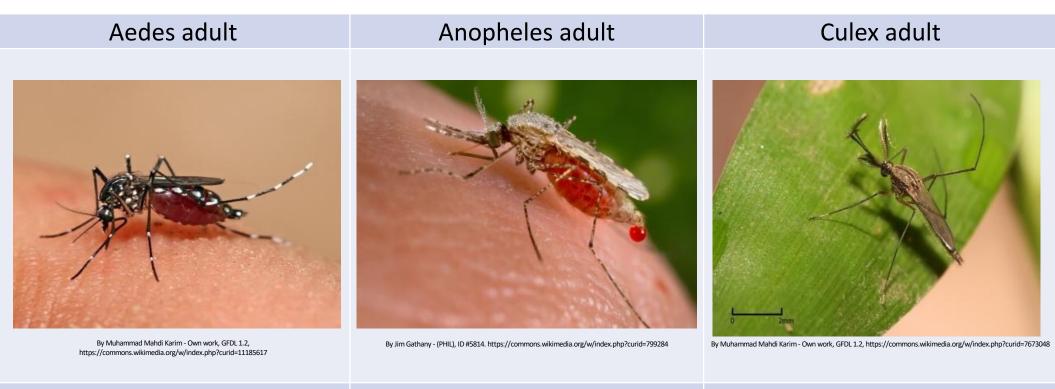
•The amplified PCR product must also be sequenced. Sanger sequencing is sensitive to highly repetitive DNA.

DNA Barcoding Plants vs. Animals


Finding a DNA locus that possesses all of these qualities(Discrimination, Universality, Robustness) was relatively easy in animals.

The animal barcode of choice Is the mitochondrial gene cytochrome *c* oxidase I (COI).

A DNA barcode for land plants


CBOL Plant Working Group¹

Communicated by Daniel H. Janzen, University of Pennsylvania, Philadelphia, PA, May 27, 2009 (received for review March 18, 2009)

Based on recommendations by a barcoding consortium (Consortium for the Barcode of Life, plant working group) the chloroplast genes *rbcL* and *matK* come very close to being ideal candidates for universal plant barcodes.

Like any barcode loci that could be chosen, there will is always a possibility of failure to make a reasonably definitive identification of a particular specimen. Example Barcoding Experiment Can we tell the difference between larvae that look (nearly) identical?

Aedes larva

Photograph by Michele M. Cutwa, University of Florida.

Anopheles larva

Culex larva

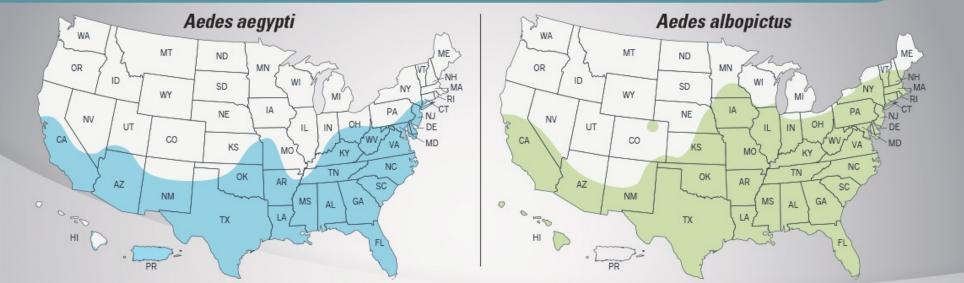
Photograph by Michelle Cutwa-Francis, University of Florida.

Why does this matter?

Aedes:

- . Chikungunya
- . Dengue fever
- . Lymphatic filariasis
- . Rift Valley fever
- . Yellow fever
- . Zika

Anopheles:


- . Malaria
- . Lymphatic filariasis

Culex:

- . Japanese encephalitis
- . Lymphatic filariasis
- . West Nile fever

Why does this matter?

Estimated range of Aedes aegypti and Aedes albopictus in the United States, 2016*

Aedes aegypti mosquitoes are more likely to spread viruses like Zika, dengue, chikungunya than other types of mosquitoes such as Aedes albopictus mosquitoes.

- These maps show CDC's best estimate of the potential range of Aedes aegypti and Aedes albopictus in the United States.
- · These maps include areas where mosquitoes are or have been previously found.
- Shaded areas on the maps do not necessarily mean that there are infected mosquitoes in that area.

*Maps have been updated from a variety of sources. These maps represent CDC's best estimate of the potential range of Aedes aegypti and Aedes albopictus in the United States. Maps are not meant to represent risk for spread of disease. SOURCE: Zika: Vector Surveillance and Control. www.cdc.gov/zika/vector/index.html